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Società Italiana di Fisica
Springer-Verlag 2001

On the nonequilibrium light-induced diamagnetism
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Abstract. A new interpretation of light-induced magnetization changes of a magnetic semiconductor, man-
ganese arsenide (MnAs), observed by the authors of references [1,2], is proposed in this paper. Contrary
to references [1,2], where the results of experiments were interpreted as the observation of light-induced
phase transition, here we propose a completely different approach. It suggests that at least far from the
vicinity of Tc, there are no real magnetization changes as in case of phase transition, but there are changes
of the magnetic flux threading the MnAs-sample. These changes are due to non-equilibrium light-induced
diamagnetic moments of quasi-free electrons of narrow d-subbands of the MnAs-conduction band. The
other aspects of the experiments of [1,2] are also discussed and some similarity between this effect and the
orbital diamgnetism due to persistent currents in mesoscopic structures is emphasised.

PACS. 75.50.Pp Magnetic semiconductors – 75.20.Ck Nonmetals

1 Introduction

In the papers [1,2] the observation of an interesting phe-
nomenon, light-induced magnetization change of the mag-
netic semiconductor manganese arsenide, was reported.
As is known [3], under normal conditions manganese ar-
senide (MnAs) is a ferromagnetic material. Under pressure
of about 4 kbar or at the temperature of 318 K, a phase
transition of the first kind from a ferromagnetic phase to
a paramagnetic one, occurs in this material.

The samples of MnAs used in the experiments of ref-
erences [1,2], had the form of a plate with linear sizes of
20× 20× 10 mm and were made by compacting a powder
with subsequent annealing. The experiments were carried
out as follows [1,2]: the sample was put into a weak mag-
netic field B of about 100 Gs and exposed to the light
flashes of a time duration about a few microseconds and
with energy of about 500 J. On the sample there was reeled
up a coil (henceforth we will call it a signal coil) connected
directly to the oscilloscope (Fig. 1).

When the light flashed, in the signal coil, an electromo-
tive force which was detected by the oscilloscope as current
pulses was induced. As it was suggested in [1,2], the emer-
gence of current pulses in a coil reeled up on the sample,
very naturally could be explained by the magnetization
changes occurring in manganese arsenide. The magnetiza-
tion changes of MnAs (calculated by means of experimen-
tal data) are dependent on temperature and are depicted
in Figure 2 (see also [2]). As it can be seen, the maximum
change of magnetization is observed at ∼Tc (318 K); how-
ever, the changes are also observed at temperatures con-
siderably smaller than Tc. The authors took special care to
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Fig. 1. Experimental setup of [1,2]: 1 - oscilloscope, 2 - en-
ergy supply, 3 - MnAs-sample set into external magnetic field,
4 - flash lamp.

cool the sample by the vapour of liquid nitrogen. This al-
lowed them, as they believed, to exclude the thermal effect
of light and to interpret the results of experiments as the
observation of light-stimulated phase transition of MnAs
from the ferromagnetic state to paramagnetic one at the
temperature T < Tc. According to [1,2], the magnetiza-
tion of MnAs-sample changes abruptly at such a transition
and causes the change of magnetic flux threading the sig-
nal coil. As a result, electromotive force is induced in it
and the corresponding current peaks are detected by the
oscilloscope.

However, the arguments put by the authors in favour
of their interpretation of the observed phenomenon are,
as we shall see, by no means convincing. To my mind,
the results of these experiments have to, and can be
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Fig. 2. Magnetization changes of MnAs vs. temperature.

explained in completely different way. Such an explana-
tion makes up the content of this paper and to the author’s
mind can be instructive, especially in the light of recent
investigations of an orbital diamagnetism due to persis-
tent currents (see, for instance, Y. Ishikawa, H. Fukuyama,
cond-mat/9904052).

2 Preliminary analysis

In reference [2] there was an attempt made to explain the
ferromagnetic ordering in MnAs, as well as the results of
experiments [1,2] in the framework of Ruderman-Kittel-
Kasuya-Yosida (RKKY)-theory [3–5].

The PKKY-theory is based on the idea of indirect
exchange coupling or so called s − d(s − f) -exchange.
According to this idea, all the electrons in a crystal are
supposed to be divided into two groups. The electrons of
the first group are the delocalized electrons of conduction
band composed mainly of s-states. The electrons of an-
other group are the localized electrons belonging to the
partially occupied d- or f -states generically related to the
d(f)-shell of magnetic ions of which the crystal is com-
posed.

Supposing the single-electron approximation is valid,
one can treat the s− d(f) exchange model in terms of the
Hamiltonian:

H = HB +HM +HA, (1)

where HB is the Hamiltonian of conduction band elec-
trons,

HB =
∑

Eka
†
kσakσ,

a†kσ, akσ are the creation and anihilation operators for the
state (k, σ), where k, σ are the momentum and spin pro-
jection, respectively. HM is the Hamiltonian of magnetic
subsystem, which is usually assumed to be:

HM =
∑
ik

J(i− k)(Si · Sk)− gµBB
∑
i

Si.

Here subscript i runs over all atoms, while subscript
k is usually supposed to run over the nearest neigh-
bours of an atom participating in the exchange inter-
action, J(i − k) is the energy of exchange interaction
of localized spins which is often assumed to be con-
stant, Si,Sk are the spin operators of paramagnetic ions,
g is the Lande factor, µB is Bohr magneton and B
is an external magnetic field. The last term in (1),
HA, is the Ruderman-Kittel, or so called s − d exchange
which is responsible for the interaction between conduc-
tion electrons (c-electrons) and the electrons localized on
magnetic ions. In one-band approximation it is of the
form:

HA = −A
∑

(Si · s)σσ′a
†
iσ′aiσ, (2)

and the components of c-electron spin are

sαg =
∑

(sα)σσ′a
†
gσ′agσ′ ,

where a†gσ′ , agσ′ are the creation and anihilation operators
on the site g with the spin projection σ′, sαg (α = x, y, z)
are the following matrices:

sx =
1
2

(
0 1
0 1

)
, sy =

i
2

(
0 −1
0 1

)
, sz =

1
2

(
0 1
0 −1

)
.

The structure of (2) becomes more lucid, if we notice that
in coordinate representation the exchange interaction be-
tween the c-electron on the i-site and the electron of mag-
netic ion on k- site is of the form: [−A(i − k)(Sk · s)],
where s is the spin operator of the c-electron. Since the
exchange interaction is short range, one can restrict the
consideration only to the nearest neighbours interaction.
In this case the interaction energy A(0) is of zeroth order
with respect to the overlapping of Wannier function of c-
electron and the wave function of localized electrons. If the
electrons are on the nearest neighbour sites, the exchange
energy is of the second order with respect to the overlap-
ping of orbitals. As a result, A(i−k) is delta function-like,
and if one deals with the indirect coupling, it is sufficient
to take into account only the term A(0) = A, which actu-
ally appears in (2).

Thus, one can say that in the RKKY-model the
magnetic ordering is, in fact, the ordering of localized
spins just like in Heisenberg model; the contribution of
c-electrons spin to total magnetic moment of the crystal
is small compared with the spin of localized electrons, but
just the c-electrons make the ordering of localized spins
possible.

From the formal point of view, RKKY-theory is a sort
of perturbation theory where the small perturbation fac-
tor λ � 1 is the ratio of exchange energy to the Fermi
energy λ ∼ A/EF. The parameter λ is small enough for
some rare earth metals, some magnetic semiconductors,
such as EuS and EuO, and some diluted alloys. It is com-
monly used to think that for such materials A is of a few
tenths of eV and the Fermi energy is about 5 eV. One can
use the Curie temperature Tc as the measure of exchange
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Fig. 3. Schematic band structure of MnAs.

interaction energy. That is why Tc for the materials de-
scribed by RKKY-theory should be not greater than a few
dozens of kelvins, since only then λ < 1.

Surely, it is not the case for manganese arsenide: for
MnAs Tc is almost 20 times greater than for EuS and
5 times greater than for EuO, while the Fermi energy, in
contrast, is smaller than that for EuS and EuO and is
about 2 eV. As a result, the factor λ is not small and the
RKKY-theory can hardly be applicable to the description
of magnetic ordering in MnAs and for the interpretation
of the experiments of reference [1,2]. This analysis makes
us doubt of the validity of the hypothesis settled forth
in [1,2], however attractive it might seem.

On the other hand, the experiments of references [1,2]
unambiguously show that the electromotive force in the
signal coil is really induced. It should be related somehow
or other to the change of magnetic flux threading the coil,
since it is hard to imagine howelse the matter be explained.
Thus, the problem is to guess what really occurs in the
sample of MnAs exposed to the light pulses and this is
the topic of the next section.

3 New interpretation of experimental results

To begin with, let us analyse the MnAs-band structure
with its relation to the experimental data reported in [2].

The conceptual band scheme for MnAs for the first
time was proposed by Goodenough et al. [6]. It is based
on the molecular orbital approach: the s- and p-states of
Mn- and As-atoms are supposed to build up bonding and
antibonding sp-bands; the bonding band (valence) is com-
pletely filled, while the antibonding band (conduction) is
empty. In between there are the narrow subbands which
are due to the overlapping of d-orbitals of Mn atoms.
Subsequently, this scheme was elaborated by other au-
thors; according to [7,8], the energy gap between the filled
and empty bands is about 3.0 eV, the 3d-band is split by
crystal field into very narrow spin-polarised dε↑, dγ↑ and

Fig. 4. Spectral dependence of the MnAs magnetization
change.

dε↓, dγ↓ subbands (here ↑ and ↓ stand for spin-up and spin-
down states) (Fig. 3). The energy gap between dε↑, dγ↑
(dε↓, dγ↓, resp.) is about 0.9 eV; the Fermi level is be-
tween dε↓ and dγ↑- subbands at T = 0 K. The occupancy
of each subband is determined by the Fermi-Dirac distri-
bution function and the corresponding density of states;
the population of dγ↑ tends to zero at the temperature
kBT < Eg/2.

The results of [2] clearly show (see Fig. 4) that there
are two distinct maxima of MnAs magnetization changes
with respect to the light wave length. The first one corre-
sponds to λ1 = 0.49 µm, while the other corresponds to
λ2 = 0.75 µm. So, the first maximum can be attributed
to the dipole transition from sp-band to the empty dγ↓-
subband, while the second one can be attributed to the
transition to the partially occupied dε↓-subband. Thus, to
my mind the results of [1,2] can be explained as follows.
Under the light pulses the population of empty dγ↓ and
partially occupied dε↓ subbands increases. The quasi-free
electrons of these narrow subbands revolve about the di-
rection of the small external magnetic field B during short
time intervals proportional to the scattering time. Natu-
rally, the orbital magnetic moment directed opposite to
the external magnetic field corresponds to this circular
motion. The emergence of an additional orbital magnetic
moment leads to the changes of magnetic flux threading
the signal coil. The last one, in its turn, causes the pulses
of electromotive force detected by oscilloscope.

Put simply, to my mind, the authors of [1,2] observed
the current pulses caused by the changes of magnetic flux
which, in their turn were due to the non-equilibrium light-
induced diamagnetic moment of the quasi-free electrons
moving in the narrow d-subbands of the MnAs conduction
band. That the d-subbands of MnAs are narrow, is very
important, since the narrower the subband is, the larger
is the electron scattering time and if the conduction band
is sufficiently narrow, the electrons have enough of time
to revolve several times about the external magnetic field,
producing an orbital magnetic moment. In the case of a
wide conduction band the scattering time is too small for
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the electron could make several revolutions and hence, no
orbital momentum arises.

Now let us analyse quantitatively the proposed model.
Let the Hamiltonian of an electron of sp-band interacting
with classical electromagnetic field of an incident light be

Ĥ(t) = Ĥ0 + Ĥ1(t).

Here Ĥ1(t) = −dE(t) describes the interaction of the elec-
tron with a classical electromagnetic field in the dipole ap-
proximation, d is the dipole transition operator (remem-
ber, we attributed the maxima of magnetization changes
to the sp → dγ↓(ε↓) transitions; the last one corresponds
to ∆L = ±1 selection rule,where L is the angular momen-
tum quantum number); E(t) is the electric field of the
electromagnetic wave.

The external magnetic field B is supposed to be in-
cluded in Ĥ0; we also assume the electrons to interact
with the crystal lattice vibrations (phonons) and take into
account the relaxation processes simply by introducing a
phenomenological relaxation time τ . We will ignore the
electron-electron interaction altogether assuming it to be
inessential.

Thus, the evolution of the quantum subsystem (elec-
trons) can be treated in terms of von Neumann equation
for the density matrix ρ(t):

i~
∂ρ

∂t
= Ĥρ− ρĤ − i

~
τ

(ρ− ρ(0)),

where ρ(0) = ρ(t = −∞) is the density matrix for the
steady state.

Since in the experiments of references [1,2] a flash
lamp was used rather than a laser as the source of light,
it is natural to expand the density matrix into a series:
ρ = ρ(0) + ρ(1) + ... and restrict consideration only to the
linear approximation. We arrive then at the next linearised
equation for the density matrix:

i~
∂ρ(1)

∂t
= H1ρ

(0) − ρ(0)H1 +H0ρ
(1) − ρ(0)H0 − i

~
τ
ρ(1).

(3)

Let it be |k〉- the complete orthonormal set of eigenvectors
of H0, that is

(Ĥ0 − εk)|k〉 = 0, 〈l|k〉 = δlk.

Taking into account that in energy representation, the
steady state density matrix ρ(0) is of the form

〈s|ρ(0)|l〉 =
e−βεl〈εs|εl〉∑

l e−βεl
= f0(εl)δsl,

where f0(εl) is the distribution function, one can rewrite
equation (3) in the form

i~
∂

∂t
ρ

(0)
kl (t) = [f0(εl)− f0(εk)]H(1)

kl

+ (εk − εl)ρ(1)
kl (t)− (i~/τ)ρ(1)

kl (t). (4)

If one searches for the solution to (4) in the form

ρ
(1)
kl (t) =

∫ ∞
−∞

ρ
(1)
kl (ω)e−iωtdω,

then one arrives at

ρ
(1)
kl (ω) =

[f0(εl)− f0(εk)]dklE(ω)
εk − εl − ~ω − i~η

,

where dkl = e〈k|r|l〉 is the matrix element of the dipole
transition operator, η = τ−1 and E(ω) is the Fourier
transform of the classically treated electromagnetic field
of light emitted by the flash lamp:

E(t) =
∫ ∞
−∞

E(ω)e(iωt)dω.

The mean value of the z-component of induced magnetic
moment (the z-axis is assumed to coincide with the direc-
tion of the external magnetic field) can be calculated in
the framework of the Kubo linear response approach [9].
We get:

〈Mz〉t =
∑
k,l

∫ ∞
−∞

[f0(εl)− f0(εk)]dkl(M̂z)klE(ω)eiωtdω
εk − εl − ~ω − i~η

,

(5)

where (M̂z)kl = 〈k|Mz|l〉 is the matrix element of the
z-component of the orbital magnetic moment operator.

Let us remember firstly, that the time scale of magneti-
zation changes observed in [1,2] was about pulse duration
and secondly, that a flash lamp was used as the source
of light. Hence, in considering the classical electromag-
netic field E(t) one should use rather the so called slowly
varying envelope approximation [10]. Thus, the shape of
the light pulses used in [1,2] to a good accuracy can be
approximated by a rectangular one:

E(t) =
{
E0, 0 ≤ t ≤ t0,

0, t < 0, t > t0,

while its Fourier transform is of the form: E(ω) =
(iE0/ω)(1 − exp(iωt0)). Using the last formula, one can
easily calculate the integral in (5). Indeed, let us consider
an integral

I =
∫ ∞
−∞

iE0(1− eiωt0)e−ωt

ω(εk − εl − ~ω − i~η)
dω (6)

and make an analytical continuation of the integrand over
the lower half-plane = ω < 0 (here = stands for the imag-
inary part of the subsequent expression). It is easily seen
that now the integrand obeys the Jordan Lemma [11] and
hence, I = −2πiRes[F (ω)e−iωt], where

F (ω) =
iE0(1− eiωt0)

ω(εk − εl − ~ω − i~η)
,
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and ~−1(εk − εl) − iη = ωkl − iη = z0 is the only pole of
the integrand in the lower half-plane = ω < 0. As a result
we have:

〈Mz〉t = −2π
∑
k,l

[f0(εl)− f0(εk)]dkl(Mz)klE0

~(ωkl − iη)

×
[
e−ηte−ωklt − eiωkl(t0−t)eη(t0−t)

]
.

Now it is easily seen that, indeed, induced magnetic mo-
ment and hence, the magnetization changes could be ob-
servable only for the time interval t ∼ t0, because for the
time t > t0 they decrease exponentially.

In order to discuss the spectral dependence of MnAs
magnetization changes, one should analyze the Fourier
component of induced magnetic moment:

(Mz)ω =
∑
k,l

[f0(εl)− f0(εk)]dkl(Mz)kl
~(ωkl − ω − iη)

E(ω), (7)

and its real part, which is of the form

<(Mz)ω =

−
X

k,l

[f0(εl)− f0(εk)]dkl(Mz)klE0(∆kl sinωt− η(1 − cosωt0))

~ω(∆2
kl − η2)

,

(8)

where ∆kl = ωkl−ω and < stands for the real part of the
subsequent expression.

Here it is necessary to make some comments concern-
ing subsequent calculations. The dynamic of electrons in
an energy band and external fields can be described by an
equation of the form:[

εn +
(~∇+ (e/c)A)2

2m∗
+ U(r)

]
Ψ(r) = EΨ(r) (9)

where εn is the energy of corresponding band, A is the
vector potential, m∗ is the effective mass and U(r) is the
potential arising due to space-charge or any other discon-
tinuity or, for instance, other confining potential etc. Al-
though equation (9) looks just like the Schrödinger equa-
tion, it is really what is called a single band effective mass
approximation. The lattice potential, which is periodic on
atomic scale, does not appear explicitly in equation (9);
its effect is incorporated through the effective mass m∗
which we will assume to be spatially constant. It should
be noted also that the wave function one calculates from
equation (9) is not the true wave function but its smoothed
out version that does not show any rapid variations on the
atomic scale.

Since U(r) is often referred to as the confinement po-
tential responsible for the size quantization in micro- and
mesoscopic structures (see, for example, [12]), we can sup-
pose it to be zero, because we deal with a macroscopic
sample.

If the vector potential to be A = (−(1/2y)B,
(1/2x)B, 0), then the Hamiltonian of an electron in a uni-

form magnetic field is:

H0 =
1

2m∗

[(
px −

e

2
yB
)2

+
(
py +

e

2
xB
)2

+ pz

]
. (10)

Using Hamiltonian (10), after a round of tiresome calcu-
lations (see Appendix), one arrives at

<(Mz)ω = −
√

2π~e2aBE0(eρnE)
m∗~ω(∆2

sd − η2)
× (∆sd sinωt0 − η(1− cosωt0))F (f(εd), f(εs), nρ,m),

(11)

where F (f(εd), f(εs), nρ,m) is a very complicated func-
tion of its arguments (nρ,m are the corresponding quan-
tum numbers), explicit form of which is given in the Ap-
pendix; ∆sd = ~−1(εd − εs − ~ω) is the detuning, s and
d stand for s-and d-bands respectively, aB =

√
h/|e|B is

the magnetic length.
One should notice that in accordance with (11), the

dimension of the Fourier component of the induced mag-
netic moment is equal to (magnetic moment/frequency).
However, to make reasonable estimates which could be
compared with experimental data, one should deal with
the mean value of the spectral component of the induced
magnetic moment rather than the Fourier component of
the magnetic moment. Since in [1,2] a flash lamp rather
than a laser was used as the source of light, one can sup-
pose the detuning ∆sd to be much greater than η. Thus,
averaging <(Mz) over a small frequency interval ∆ω, one
can substitute cosωt0 and sinωt0 by their mean value of 0
and get the next formula for the mean value of the induced
magnetic moment:

〈Mz〉 ∼ −
√

2π~e2aB〈E0〉〈eρnE〉η∆ω
m∗~ω∆2

sd

× F (f(εd), f(εs), nρ,m).

Also it is necessary to add here some comments concern-
ing firstly, the meaning of the quantity: 〈E0〉〈eρnE〉 and
second, the relation between the induced magnetic mo-
ment and the changes of magnetic flux threading the sig-
nal coil. Actually, in the experiments discussed, the mea-
surable quantity was the intensity of light, but not E0.
Hence, the last one should be expressed in terms of av-
eraged power flux: 〈W 〉 = 1/2(ε0c|〈E〉|2), where ε0 is the
dielectric constant and c is the light velocity.

As for the relation between the induced magnetic mo-
ment and the changes of magnetic flux, let us notice
that the dimension of the magnetic moment is [M] =
L5/2M1/2T−1, where L,M, T stand for the units of length,
mass and time respectively. In order to construct, by
means of M, the quantity of the dimension of magnetic
field [B] = L−1/2M1/2T−1, one should multiply M by
the quantity which is of L3 dimension. The only rele-
vant quantity of such dimension is the volume V0 of the
part of the sample where the light is absorbed. Now the
change of magnetic flux can be estimated as −dΦ/dt ≈
−〈Mz〉V0/t0.
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Now we are well equipped to proceed to the numer-
ical estimates. To this end, let us have the data of [1,2]
power flux incident on the sample is about 1 W cm−2,
t0 ∼ 10−5 s, sample area is of 20× 10 mm, B = 10−2 T,
thickness of the layer where the incident light is absorbed,
is of 50 nm; the energy gap between sp-and dγ↓- bands
is about 2.5 eV, the width of dγ↓- band (and the spec-
tral range ∆ω) is of 0.004 eV. Above all, we suppose
τ ∼ ω−1

B = |e|B/m∗ ∼ 2 × 10−9 s and m∗ ≈ m0. Then,
even if one assumes the number of loops of the coil to
be n = 1 (the exact number was not reported in [1,2],
but certainly it cannot be less than 1), the electromotive
force calculated in this way would be about 100 µV. No
doubt such signal is quite well to be detected by the stan-
dard oscilloscope even without intermediate amplification.
However, the calculations made in such way as to underes-
timate the effect and the reason for that is the following.
We estimated the magnetic flux change by the formula
−dΦ/dt ∼ ∆Φ/t0, while in fact, instead of flash duration
t0, one should rather use the rates of flash rise and flash
decay. These can be much shorter than t0; unfortunately,
the rates of pulse rise and pulse decay also were not re-
ported in [1,2].

4 Discussion and conclusions

Proceeding to the general discussion, it seems worthy
to add at first some comments on the problem of light-
induced phase transitions. Apart from trivial heating,
there are other ways light can affect the phase transition in
the solid state. Sometimes, contrary to the heating, these
mechanisms can increase the ordering. For instance, at a
given temperature, the magnetic ordering can be greater
under the effect of light than without it. However, deal-
ing with these transitions, one has to be careful when in-
terpreting obtained results, because the basic difference
between the usual phase transition and the light-induced
transition is that the latter occurs under non-equilibrium
conditions. As a result, for their description one cannot
use the thermodynamic potentials such as, free energy. In
thermal equilibrium the probability measure can in prin-
ciple be expressed through an appropriate ensemble. For
non-equilibrium systems an equally powerful concept is
missing. However, the different tools for the treatment of
non-equilibrium systems were already developed, among
them the grand canonical partition function (see [13] and
the references cited therein) and the entropy generation
rate [14].

Nevertheless, there were already reported reliable ex-
perimental data [15] which could be interpreted as the
observation of light-induced phase transitions in a semi-
conductor from the paramagnetic state to a ferromagnetic
one. The basic idea here is that during light absorption the
helicity (quantum number which is the projection of par-
ticle’s spin onto the particle’s wave vector) is conserved. It
means that using circularly polarized light one can rise up
the ordering of spins by means of their optical orientation.
Such optical orientation of spins was indeed observed in

an EuS-magnetic semiconductor [15]. The authors of ref-
erence [15] used a circularly polarized laser beam together
with additional modulation, since, as they have shown,
unmodulated unpolarized light led mainly to the heat-
ing of the sample. However, the shift of Tc observed for
light-induced phase transitions was only about 0.1 K, not
10–20 K as was reported in [1,2].

Thus, our critical analysis shows that the explanation
of the observed light-induced magnetization changes of
MnAs proposed in [1,2] and based on the hypothesis of
light-induced phase transition, is far to be satisfactory.
Here instead, we propose completely different approach
which, in fact, suggests that at least afar off the vicinity
of Tc, there are no real magnetization changes as in case
of phase transition, but there are the changes of magnetic
flux threading the MnAs-sample. These changes are due to
non-equilibrium light-induced diamagnetic moment of the
quasi-free electrons of d-subbands of the MnAs-conduction
band. As for the nearest vicinity of Tc, no doubt there is
a phase transition here, but an ordinary thermodynamic
phase transition caused by the thermal effect of light, that
is, by heating of the sample.

As for the last remark in the previous section concern-
ing the necessity to take into account time duration of the
flash (pulse) rise and flash (pulse) decay, it suggests also
that in fact, there should be observed two current pulses,
the first one induced by the flash rise (or the front edge
of the pulse) and the second induced by the flash decay
(or the back edge of the pulse). Curiously enough, in the
experiments of [1,2] there were two pulses detected , but
the authors treated it as the argument in favour of their
hypothesis of the light-induced phase transition from the
ferromagnetic state to a paramagnetic one at the temper-
ature T < Tc, since as they wrote, if it were the ordinary
phase transition, the back transition from paramagnetic
state to ferromagnetic state would occur after elapse of
time much greater than the flash duration. To the author’s
mind, it is just a misinterpretation, whereas the natural
explanation of these results is proposed above.

In the framework of proposed model, the difference of
the maxima’s heights in Figure 4 also can be easily un-
derstood. Remember, the first maximum at λ = 0.49 µm
corresponds to the transition from the valence band to
the empty dγ↓ subband, while the second one corresponds
to the transition to the partially occupied dε↓ subband.
Thus, in accordance with formulae (7) and (8), the in-
duced magnetic moment should be greater for the first
transition.

The experimental verification of the present explana-
tion of the observed effect, is simple. First, it is sufficient to
switch off the magnetic field: if the explanation proposed
here is correct, no current pulses should be observed in
the signal coil. Secondly, one could increase the current
pulses by increasing the rates of flash rise and flash decay.
By decreasing these rates (i.e. expanding the front and
back edges of light flash) one could decrease the current
pulses. Thirdly, by increasing time duration of the flash
and increasing simultaneously the rates of its rise and de-
cay, one could also increase the time interval between the
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two current pulses. This last idea suggests that, in spite
of doubtful interpretation, the effect observed in [1,2] is a
very interesting one and as such could be a useful exper-
imental technique, especially if the flash lamp would be
substituted by laser. This technique could be used, for in-
stance, for the investigation of the mechanisms of electron
scattering in magnetic materials of band structure similar
to that of MnAs.

As the final remark, perhaps it is worth mentioning,
that the effect considered here resembles to some extent
orbital diamagnetism in mesoscopic systems [16]. Such
systems exhibit another type of electric current, which is
without dissipation, in contrast to the transport currents.
These are so called persistent currents, i.e., orbital cur-
rents induced in micro- and mesoscopic structures by the
external magnetic field [17] and they are the sources of
orbital diamagnetism. It is clear that in our case the “or-
bital currents”, that is, the revolutions of electrons in nar-
row d-subbands, though not persistent, are nevertheless
long-lasting, since the scattering in narrow d-subbands is
weakened and as a consequence, the orbital diamagnetism
arises which is also not “persistent” but light-induced and
non-equilibrium.

The author is greatly indebted to Mr. G. Tomaka for helping
in the preparation of the figures.

Appendix

Here we derive the formula (11) for the real part of the
Fourier component of induced magnetic moment.

Starting with the Hamiltonian (10) and introduc-
ing the cylindrical coordinates (ρ, ϕ, z), one can write
down the solution to the corresponding Schrödinger equa-
tion in the form:

Ψnρ,m(ρ, ϕ, z) =
eimϕ

√
2π

eipz/hRnρ,m(ρ),

nρ = 1, 2, ...;m = 0,±1, ...,±nρ,

Rnρ,m(ρ)C exp[−1
2

(
ρ2

2a2
B

)]ρ|m|Φ(−nρ, |m|+ 1,
ρ2

2a2
B

),

here C is the normalizing constant, Φ(−nρ, |m| + 1,
ρ2/2a2

B) is the degenerate hypergeometric function.
By means of the last formulae, the matrix element of

the z-component of induced magnetic moment can be rep-
resented as follows ({s} stands for the set of quantum
numbers {nρ,m}):

〈s′ |Mz|s〉 = − em

2m∗
δ(p

′

z − pz)δmm′

×
∫ ∞

0

Rn′ρ,m
′ (ρ)Rnρ,m(ρ)ρdρ,

(remember, m∗ stands for the effective mass while m is
the quantum number). Substituting in the last integral

ρ2/2a2
B by x, using the relation between degenerate hy-

pergeometric function and the Laguerre polinomials [18]:

Φ(−nρ, |m|+ 1, x) =
nρ!|m|!

(nρ + |m|)!L
|m|
nρ (x),

and taking into account that∫ ∞
0

e−xxαLα
m′

(x)Lαm(x)dx ={
0, m 6= m

′
, Reα > −1,

Γ (α+m
′
+ 1)/m

′
!, m = m

′
, Reα > 0,

one gets

(Mz)s′ s = −m~e
2m∗

δ(p
′

z − pz).

Here also the natural normalizing condition∫ ∞
0

[
Rnρm(ρ)

]2
ρdρ = 1

was used. The matrix element of the dipole momentum
operator in the cylindrical coordinates is of the form:

rs′s = e
{
〈s′ |ρ|s〉(eρ · nE) + 〈s′ |z|s〉(ez · nE)

}
,

nE =
E
|E| ,

and eρ, ez are the unit vectors of ρ- and z-axes, respec-
tively. Taking into account that in equations (7, 8) sum-
mation includes also the integration over the components
of the momentum pz, one gets the next expression for the
spectral component of the induced magnetic moment pro-
jection:

<〈Mz〉ω =

− π
√

2~e2aBE0(eρ · nE)(∆sd sinωt0 − η(1− cosωt0))
m∗~ω(∆2

sd − η2)

×
∑
nρm

[f0(εd, nρ,m)− f0(εs, nρ,m)]
mΓ (3/2 + |m|)

nρ!|m|!

×
(
nρ∑
k

Cknρ

[
2F

(nρ−k)
1 (α, β, γ;w(η))yk(η)

]
η=0

)
,

where α = |m|/2 + 3/4;β = |m|/2 + 5/4; γ =
|m| + 1;w(η) = 16η2/(1 − η2)2; 2F

(nρ−k)
1 (α,

β, γ;w(η)) is the Gauss hypergeometric function;
y(η) = (1 − η)1/2(1 + η−(|m|+3/2)), Cknρ stands for the
binomial coefficients (“choice numbers”, Cknρ =

(
nρ
k

)
) that

is, the formula (11), where

F (f(εd), f(εs), nρ,m) =∑
nρm

[f0(εd, nρ,m)− f0(εs, nρ,m)]
mΓ (3/2 + |m|)

nρ!|m|!

×
( nρ∑

k

Cknρ

[
2F

(nρ−k)
1 (α, β, γ;w(η))yk(η)

]
η=0

)
.
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